
Ordinary differential equations which linearize on differentiation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 2037

(http://iopscience.iop.org/1751-8121/40/9/009)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 03/06/2010 at 06:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/9
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 2037–2043 doi:10.1088/1751-8113/40/9/009

Ordinary differential equations which linearize on
differentiation

E V Ferapontov1 and S R Svirshchevskii2

1 Department of Mathematical Sciences, Loughborough University, Loughborough,
Leicestershire LE11 3TU, UK
2 Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya Sq. 4,
125047 Moscow, Russia

E-mail: E.V.Ferapontov@lboro.ac.uk and svr@keldysh.ru

Received 26 August 2006, in final form 14 December 2006
Published 14 February 2007
Online at stacks.iop.org/JPhysA/40/2037

Abstract
In this paper, we discuss ordinary differential equations (ODEs) which linearize
upon one (or more) differentiations. Although the subject is fairly elementary,
equations of this type arise naturally in the context of integrable systems.

PACS numbers: 02.30.Hq, 02.30.Ik
Mathematics Subject Classification: 34A05

1. Introduction

Let us consider a linear nth-order ODE with the general solution

u(x) = a1f1(x) + · · · + anfn(x), (1)

which is a linear superposition of n linearly independent solutions fi(x). Imposing a nonlinear
relation among the coefficients,

F(a1, . . . , an) = 0,

one obtains an (n−1)-parameter family of functions u(x) which automatically solve a nonlinear
ODE of the order n−1. By construction, this ODE linearizes on differentiation. Imposing two
relations among the coefficients, one obtains an ODE of the order n − 2 which linearizes on
two differentiations, etc. Using this simple recipe one can generate infinitely many examples
of linearizable equations. This note was motivated by the observation that equations of this
type arise naturally in the context of integrable systems. The paper is organized as follows.

Section 2 contains a list of examples of ODEs which linearize on differentiation. These
equations appear in the construction of exact solutions of integrable PDEs, in the classification
of integrable hydrodynamic chains, etc.

In section 3, we derive necessary and sufficient conditions for an ODE to linearize upon
a finite number of differentiations.
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In section 4, the general form of nonlinear ODEs linearizable by a differentiation is
discussed. It is obtained by imposing nonlinear constraints among first integrals of a linear
equation. Parallels with the theory of linear invariant subspaces of nonlinear differential
operators are briefly discussed.

We point out that the problem of linearization of nonlinear ODEs has attracted a lot of
attention in the literature. The conditions of point and contact linearizability of second- and
third-order ODEs were first studied by Lie [13]; see also [1, p 38], [2, p 202], [3, 5, 11] and
references therein. A short remark on ‘integration via differentiation’ can be found in Kamke
[12, section 4.14]. We emphasize that in this paper we are concerned with a different concept
of ‘linearizability on differentiation’. Note that while the linearizability by point or contact
transformations is closely connected with symmetry properties of the equation, this is not true
in our case: the symmetry group of the original nonlinear equation can be trivial, becoming
non-trivial for a linear equation obtained on differentiation.

2. Examples

Example 1. As shown in [10], the construction of ‘follyton’ solutions of a nonlinear system
associated with a fourth-order self-adjoint spectral problem, reduces to an ODE

u′′′′u − u′′′u′ + 1
2u′′2 = 1

2c4u2,

c = const. On differentiation this equation becomes linear, u′′′′′ = c4u′, with the general
solution

u = a0 + a1 sinh cx + a2 cosh cx + a3 sin cx + a4 cos cx.

The substitution of this ansatz into the equation leads to a single quadratic relation among the
coefficients, −a2

1 + a2
2 + a2

3 + a2
4 = 1

2a2
0 .

Example 2. The classification of integrable Hamiltonian hydrodynamic chains associated with
the Kupershmidt–Manin bracket reduces, in a particular case, to a solution of the nonlinear
ODE [6]

(4c2x2u′ − 12c2xu − 1 − αx + 2cx2)u′′′ + (α − 4cx + 12c2u + 4c2xu′ − 2c2x2u′′)u′′

+ (4c − 8c2u′)u′ − 1
2 = 0,

here c, α are arbitrary constants. Remarkably, this complicated equation linearizes on
differentiation, taking the form

(4c2x2u′ − 12c2xu − 1 − αx + 2cx2)u′′′′ = 0.

Leaving aside the possibility that the coefficient at u′′′′ equals zero (see [6] for a complete
analysis), we conclude that u must be a cubic polynomial,

u = a0 + a1x + a2x
2 + a4x

3,

where the constants satisfy a single relation 12a4 − 8ca1 + 16c2
(
a2

1 − 3a2a0
) − 4a2α + 1 = 0.

Example 3. Another subclass of integrable hydrodynamic chains from [6] is governed by the
ODE

8x2u′′′u′ + 8xu′′u′ − 4x2u′′2 − u′2 − 12u = 0

which linearizes on differentiation,

8x2u′′′′ + 24xu′′′ + 6u′′ − 12 = 0.
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The general solution is given by the formula

u = x2 + a0 + a1x + a2x
1/2 + a3x

3/2

where the constants satisfy a single quadratic relation 12a0 + a2
1 − 3a2a3 = 0.

Example 4. One of the versions of equations of associativity [4] reads as

FξξξFηηη − FξξηFξηη = 1.

Looking for solutions in the form F = ξ 3u(x), x = η/ξ , one arrives at the ODE

6uu′′′ − 4xu′u′′′ + 2xu′′2 − 2u′u′′ = 1,

which takes the form (6u − 4xu′)u′′′′ = 0 after a differentiation. The case u′′′′ = 0 leads to
the general solution

u = a0 + a1x + a2x
2 + a3x

3

where the constants satisfy a single quadratic relation 9a0a3 − a1a2 = 1. In terms of F these
solutions correspond to polynomials cubic in ξ and η. The case 6u − 4xu′ = 0 leads to
u = cx3/2. The corresponding F is given by the formula F = c(ξη)3/2 where c = i 2

√
2

3 .

Example 5. The third-order ODE,

u′′′ = su′′ (s + 1)u′ − 2xu′′

(s + 1)((s + 2)u − 2xu′)
, (2)

s = const arises in the classification of integrable Hamiltonian hydrodynamic chains associated
with Kupershmidt’s brackets [7]. It possesses a remarkable property: for parameter values
s = 1, 2, 3, . . . this equation linearizes on exactly s differentiations. Thus, for s = 1 the
differentiation of (2) implies u′′′′ = 0, so that the general solution is

u = a0 + 3a1x + 3a2x
2 + a3x

3,

where the constants ai satisfy a single quadratic constraint a0a3 − a1a2 = 0. For s = 2,
differentiating (2) twice, we arrive at u(5) = 0 with the general solution

u = a0 + 4a1x + 6a2x
2 + 4a3x

3 + a4x
4,

where the constants ai satisfy a system of quadratic constraints

a0a3 − a1a2 = 0, a1a4 − a2a3 = 0, a0a4 − a2
2 = 0;

note that these constraints specify a determinantal variety characterized by the requirement
that the rank of the matrix(

a0 a1 a2

a2 a3 a4

)

equals one. The mystery of this example is unveiled by the formula for its general solution,

u = a(x + c)s+2 + b(x − c)s+2,

which is valid for any s; here a, b, c are arbitrary constants (we thank A P Veselov for this
observation).

3. Necessary and sufficient conditions for the linearizability

In this section, we demonstrate how to derive necessary and sufficient conditions for a nonlinear
ODE to linearize on one (or more) differentiations. The procedure is fairly straightforward
and can be readily adapted to particular situations.
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3.1. First-order ODEs which linearize on one differentiation

Let us characterize first-order equations

u′ = f (x, u)

which imply a linear equation,

u′′ = a(x)u′ + b(x)u + c(x),

on one differentiation. Thus, we have fx + fuf = af + bu + c. Differentiating this relation
twice with respect to u, and introducing F = fx +fuf , one obtains Fuu = afuu. Differentiating
this by u once again one has Fuuu = afuuu. Thus, the required linearizability condition takes
the form

Fuuufuu = fuuuFuu;
see section 4 for the general (implicit) form of all such right-hand sides f (x, u) (formula (6)).

3.2. Second-order ODEs which linearize on one differentiation

Let us characterize second-order equations

u′′ = f (x, u, p), p = u′,

which imply a linear equation,

u′′′ = a(x)u′′ + b(x)u′ + c(x)u + k(x),

on one differentiation. Thus, we have fx + fup + fpf = af + bp + cu + k. Applying to this
relation the operators ∂2

u, ∂u∂p, ∂2
p, and introducing F = fx + fup + fpf , one obtains

Fuu = afuu, Fup = afup, Fpp = afpp,

or, equivalently, d2F = a d2f (here the second symmetric differential d2 is calculated with
respect to u and p only). Differentiating this once again by u and p one obtains d3F = a d3f .
Thus, the required linearizability condition takes the form

d3F d2f = d3f d2F.

3.3. First-order ODEs which linearize on two differentiations

Here we characterize first-order equations

u′ = f (x, u)

which imply a linear equation

u′′′ = a(x)u′′ + b(x)u′ + c(x)u + k(x)

after two differentiations. Introducing F = fx + fuf and G = Fx + Fuf , we have
G = aF + bf + cu + k. Differentiating this twice with respect to u one obtains Guu =
aFuu + bfuu. This implies Guuu = aFuuu + bfuuu and Guuuu = aFuuuu + bfuuuu. Thus, the
required condition is

det


 Guu Fuu fuu

Guuu Fuuu fuuu

Guuuu Fuuuu fuuuu


 = 0.

In all of the above examples, the linearizability is characterized by differential relations which
must be satisfied by the right-hand side of the equation. As we demonstrate in the next
section, these differential equations can be integrated in closed form, leading to (implicit)
representation for all linearizable equations.
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4. General form of linearizable equations

All equations linearizable by a differentiation can be obtained by imposing functional relations
among first integrals of linear equations. Since the first integrals can be parametrized explicitly
by arbitrary functions of the independent variable x, this provides a general formula for
equations which linearize on differentiation.

Example 6. Let us describe all ODEs which reduce to u′′′′ = 0 after one or two differentiations.
The basis of first integrals consists of

I1 = u′′′, I2 = xu′′′ − u′′,

I3 = x2u′′′ − 2xu′′ + 2u′, I4 = x3u′′′ − 3x2u′′ + 6xu′ − 6u.
(3)

Any third-order equation which reduces to u′′′′ = 0 after one differentiation can be represented
by a single relation among the first integrals,

F(I1, I2, I3, I4) = 0.

Any second-order equation which reduces to u′′′′ = 0 after two differentiations can be
represented in implicit form by two relations,

F(I1, I2, I3, I4) = 0, G(I1, I2, I3, I4) = 0;
one has to eliminate u′′′ to obtain the required second-order equation.

In general, let us consider a linear ODE

L[u] ≡ u(n) + b1(x)u(n−1) + · · · + bn−1(x)u′ + bn(x)u = b(x). (4)

Let f0(x) be its particular solution, and let f1(x), . . . , fn(x) be a fundamental system of
solutions (FSS) of the corresponding homogeneous equation. A complete set of first integrals
for the equation (4) can be taken in the form

Ii[u] = W [f1, . . . , fi−1, u − f0, fi+1, . . . , fn]

W [f1, . . . , fn]
, i = 1, . . . , n, (5)

where W [·] denotes the Wronskian of the functions indicated in square brackets. Indeed,
for an arbitrary solution f (x) = f0(x) + a1f1(x) + · · · + anfn(x) we have Ii[f (x)] = ai for
i = 1, . . . , n, i.e., all {Ii} take constant values. Applying (5) to the equation u′′′′ = 0 with
f0(x) = 0, fi(x) = xi−1, i = 1, . . . , 4, one obtains first integrals which coincide with (3) up
to constant factors.

For example, in the case n = 2 the general form of first-order equations linearizable by
one differentiation is represented via arbitrary functions f0(x), f1(x), f2(x) and F as

F(I1[u], I2[u]) = 0 (6)

where

I1[u] = W [u − f0, f2]

W [f1, f2]
= (u − f0)f

′
2 − (u − f0)

′f2

f1f
′
2 − f ′

1f2
,

I2[u] = W [f1, u − f0]

W [f1, f2]
= −(u − f0)f

′
1 + (u − f0)

′f1

f1f
′
2 − f ′

1f2
.

The differentiation of (6) yields

−f2FI1 + f1FI2

(W [f1, f2])2
((u − f0)

′′W [f1, f2] − (u − f0)
′(W [f1, f2])′ + (u − f0)W [f ′

1, f
′
2]) = 0,

leading to the linear equation

W [f1, f2, u − f0] = 0, or W [f1, f2, u] = W [f1, f2, f0].
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This construction generalizes to the case of arbitrary n in a straightforward way. In particular,
equation (6) provides the general (implicit) form for equations discussed in subsection 3.1.
Similar representations can be obtained for all other cases from section 3.

The linear span of the functions fi(x),

Wn = L{f1(x), . . . , fn(x)}, (7)

represents the linear space of solutions to the homogeneous equation L[u] = 0 corresponding
to (4). The space Wn is said to be invariant with respect to a differential operator F, if
F [Wn] ⊆ Wn. A systematic study of operators preserving a given subspace was initiated in
[8] in the context of constructing explicit solutions for nonlinear evolution equations. The
general form of operators preserving the subspace (7) is given by

F [u] =
n∑

i=1

Ai(I1, . . . , In)fi(x), (8)

where Ai(I1, . . . , In) are arbitrary functions of the first integrals of the equation L[u] = 0 (see
[9, 14] for more details). Given an operator F of the form (8), we introduce the equation

F [u] = 0, (9)

and look for its solutions in the form (1). The substitution of (1) into (9) yields the identity
n∑

i=1

Ai(I1, . . . , In)fi(x) = 0

implying that

Ai(I1, . . . , In) = 0 for i = 1, . . . , n. (10)

This system imposes relations on the coefficients ai .
Most of the previous examples fit into this scheme. For instance, the equations from

examples 2 and 4 are written via the first integrals (3) as

F [u] ≡ 2C2
(
I4I2 − I 2

3

)
+ 2CI3 − I1 − αI2 − 1

2 = 0

and

F [u] ≡ −I4I1 + I3I2 − 1 = 0,

respectively, where Ii are given by (3). In both cases the system (10) reduces to a single
relation.

Similarly, for the equation (2) rewritten as

Fs[u] ≡ (s + 1)[(s + 2)u′′′u − su′′u′] − 2x[(s + 1)u′′′u′ − su′′2] = 0, (11)

one obtains, for s = 1,

F1[u] ≡ 1
2 (I2I3 − I1I4) = 0;

this again leads to a single relation (10). In the case s = 2 we have a representation

F2[u] ≡ 1
2

[
(I2I3 − I1I4)x

2 +
(
I1I5 − I 2

3

)
x + (I3I4 − I2I5)

] = 0 (12)

via the first integrals I1, . . . , I5 of the equation u(5) = 0. In this case the system (10) formally
consists of three relations,

I2I3 − I1I4 = 0, I1I5 − I 2
3 = 0, I3I4 − I2I5 = 0,

however, only two of them are functionally independent.
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Remark. In accordance with [15], every operator (8) of the order n − 1 − k, admitted by the
equation

u(n) = 0, (13)

is expressed in terms of the differences

J k
i = xJ k−1

i − J k−1
i+1 , i = 1, . . . , n − k, (14)

with J 0
i ≡ Ii, i = 1, . . . , n ( Ii are first integrals for (13)). All these expressions are of

the order n − 1 − k, and satisfy the identity Dk+1J k
i = 0 on solutions of the equation (13).

Setting n = s + 3, k = s − 1, we obtain that any third-order operator admitted by the equation
u(s+3) = 0 is defined via the functions J s−1

i , i = 1, . . . , 4. For instance, the operator Fs

from (11) is represented as

Fs[u] = 1
2

(
J s−1

2 J s−1
3 − J s−1

1 J s−1
4

)
.
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